2002 AMC8 真题 答案 详解

🗓 2002-01-17 📁 AMC 🏷️ 2002 AMC8 AMC


序号 文件 说明
1 2002-amc8-paper-eng-zh.pdf 11 页 446.56KB 真题-中英双语
2 2002-amc8-paper-eng.pdf 4 页 154.48KB 真题-英文
3 2002-amc8-key.pdf 1 页 56.13KB 真题-答案
4 2002-amc8-solution-eng.pdf 26 页 558.82KB 真题-文字详解-英文
5 2002-amc8-solution-video-zh.mp4 18.4 分钟 47.79MB 真题-视频详解-普通话

2002 AMC8

Problem 1

A circle and two distinct lines are drawn on a sheet of paper. What is the largest possible number of points of intersection of these figures?

在一张纸上画了一个圆和 2 条不同的直线,则这些图形的交点最多有多少个?

(A) 2 (B) 3 (C) 4 (D) 5 (E) 6

Problem 2

How many different combinations of $5 bills and $2 bills can be used to make a total of $17? Order does not matter in this problem.

有多少种方法可以将若干 5 元纸币和 2 元纸币组成总额为 17 元?这道题里不考虑顺序。

(A) 2 (B) 3 (C) 4 (D) 5 (E) 6

Problem 3

What is the smallest possible average of four distinct positive even integers?

4 个不同的正偶数的平均值最小可能是多少?

(A) 3 (B) 4 (C) 5 (D) 6 (E) 7

Problem 4

The year 2002 is a palindrome (a number that reads the same from left to right as it does from right to left). What is the product of the digits of the next year after 2002 that is a palindrome?

2002 年这个年份的数字是个回环数(是一个从左向右读和从右向左读一样的数) 。 那么 2002 年 之后的下一个也是回环数的年份的各个位上数字之积是多少?

(A) 0 (B) 4 (C) 9 (D) 16 (E) 25 2002-amc8-paper-eng-zh.pdf

添加小编微信,获取真题。
微信号 ouyu00001 添加好友请备注 AMC