2009 澳洲 AMC E-Senior 真题 答案 详解
2009-10-08序号 | 文件列表 | 说明 | ||
---|---|---|---|---|
1 | 2009-E-Senior-paper-eng-zh.pdf | 6 页 | 711.50KB | 中英双语真题 |
2 | 2009-E-Senior-paper-eng.pdf | 6 页 | 331.74KB | 英文真题 |
3 | 2009-E-Senior-key.pdf | 1 页 | 12.55KB | 真题答案 |
中英双语真题
Advanced Test (11-12 Grade)
1-10 questions, 3 points each
-
Expression: $(2000+9)-(2000-9)$ equals
(A) $4000$ (B) $2018$ (C) $3982$ (D) $0$ (E) $18$ -
In the diagram on the right, the value of $x$ is equal to
(A) $140$ (B) $122$ (C) $80$
(D) $90$ (E) $98$ -
The graph of the equation $y=kx$ passes through the point $(-2,-1)$, then the value of $k$ is
(A) $2$ (B) $-2$ (C) $4$ (D) $\frac{1}{2}$ (E) $-\frac{1}{2}$ -
Expression: $(0.6)^{-2}$ equals
(A) $-0.36$ (B) $0.036$ (C) $\frac{9}{25}$ (D) $\frac{25}{9}$ (E) $3.6$ -
Polynomial: $(x-y)-2(y-z)+3(z-x)$ equals
(A) $-2x-3y+5z$ (B) $-2x-3y-z$ (C) $4x+y-z$
(D) $4x+3y-z$ (E) $2x+3y-5z$ -
There is a string of beads, with the largest bead in the center and the smallest beads at both ends. The size of the beads gradually increases from both ends towards the center, as shown in the diagram.
The price of the smallest bead is $1, the next smallest bead is $2, and so on. If there are a total of 25 beads in this string, how much money can be returned if $200 is paid for it?
(A) $25$ (B) $31$ (C) $40$ (D) $52$ (E) $55$
英文真题
Senior Division Questions 1 to 10, 3 marks each 1. The value of $(2009+9)-(2009-9)$ is (A) $4000$ (B) $2018$ (C) $3982$ (D) $0$ (E) $18$ 2. In the diagram, $x$ equals (A) $140$ (B) $122$ (C) $80$ (D) $90$ (E) $98$ 3. The graph of $y=kx$ passes through the point $(-2,-1)$. The value of $k$ is (A) $2$ (B) $-2$ (C) $4$ (D) $\frac{1}{2}$ (E) $-\frac{1}{2}$ 4. The value of $(0.6)^{-2}$ is (A) $-0.36$ (B) $0.036$ (C) $\frac{9}{25}$ (D) $\frac{25}{9}$ (E) $3.6$ 5. $(x-y)-2(y-z)+3(z-x)$ equals (A) $-2x-3y+5z$ (B) $-2x-3y-z$ (C) $4x+y-z$ (D) $4x+3y-z$ (E) $2x+3y-5z$ 6. On a string of beads, the largest bead is in the centre and the smallest beads are on the ends. The size of the beads increases from the ends to the centre as shown in the diagram. The smallest beads cost $1 each, the next smallest beads cost $2 each, the next smallest $3 each, and so on. How much change from $200 would there be for the beads on a string with 25 such beads? (A) $25$ (B) $31$ (C) $40$ (D) $52$ (E) $55$