2014 澳洲 AMC E-Senior 真题 答案 详解
2014-10-02序号 | 文件列表 | 说明 | ||
---|---|---|---|---|
1 | 2014-E-Senior-paper-eng-zh.pdf | 6 页 | 173.93KB | 中英双语真题 |
2 | 2014-E-Senior-paper-eng.pdf | 6 页 | 77.46KB | 英文真题 |
3 | 2014-E-Senior-key.pdf | 1 页 | 11.45KB | 真题答案 |
4 | 2014-E-Senior-solution-eng.pdf | 14 页 | 196.94KB | 真题文字详解(英文) |
中英双语真题
Advanced Test 1-10 questions, each worth 3 points 1. Which expression is equivalent to (9x^{-3})?
(A) (\frac{-9}{x^3})
(B) (\frac{3}{x})
(C) (\frac{1}{9x^3})
(D) (\frac{3}{x^3})
(E) (\frac{9}{x^3})
-
The value of the fraction (\frac{1}{0.04}) is equal to
(A) 15
(B) 20
(C) 25
(D) 40
(E) 60 -
Given (p=9), (q=-3), what is (p^2-q^2) equal to?
(A) 64
(B) 72
(C) 84
(D) 90
(E) 96 -
A circle has a circumference of π units. What is its area in square units?
(A) (\frac{\pi}{4})
(B) (\frac{\pi}{2})
(C) (\pi)
(D) (2\pi)
(E) (4\pi) -
If (K=L+\frac{6}{R}), (L=4), and (K=7), then (R) equals
(A) -18
(B) 1
(C) 12
(D) 8
(E) 2 -
Given that (x), (x^2), (x^3) are positioned on the number line as shown below, which of the following could be the value of (x)?
(A) -2
(B) (-\frac{1}{2})
(C) (\frac{3}{4})
(D) 1
(E) (\frac{3}{2})
英文真题
Senior Division
Questions 1 to 10, 3 marks each
-
The expression that has the same meaning as (9x^{-3}) is
(A) (\frac{-9}{x^3})
(B) (\frac{3}{x})
(C) (\frac{1}{9x^3})
(D) (\frac{3}{x^3})
(E) (\frac{9}{x^3}) -
The value of (\frac{1}{0.04}) is
(A) 15
(B) 20
(C) 25
(D) 40
(E) 60 -
If (p = 9) and (q = -3), then (p^2 - q^2) is equal to
(A) 64
(B) 72
(C) 84
(D) 90
(E) 96 -
A circle has circumference (\pi) units. In square units, its area is
(A) (\frac{\pi}{4})
(B) (\frac{\pi}{2})
(C) (\pi)
(D) (2\pi)
(E) (4\pi) -
If (K = L + \frac{6}{R}) and (L = 4) and (K = 7), then (R) equals
(A) -18
(B) 1
(C) 12
(D) 8
(E) 2 -
If (x), (x^2), and (x^3) lie on a number line in the order shown below, which of the following could be the value of (x)? (A) -2
(B) (-\frac{1}{2})
(C) (\frac{3}{4})
(D) 1
(E) (\frac{3}{2})
真题文字详解(英文)
Senior Division
1. The expression that has the same meaning as (9x^{-3}) is
(A) (\frac{-9}{x^3}) (B) (\frac{3}{x}) (C) (\frac{1}{9x^3}) (D) (\frac{3}{x^3}) (E) (\frac{9}{x^3})
(\blacktriangleright) (9x^{-3} = 9 \times \frac{1}{x^3} = \frac{9}{x^3},) hence (E).
-
(Also J5)
The value of (\frac{1}{0.04}) is
(A) 15 (B) 20 (C) 25 (D) 40 (E) 60
(\blacktriangleright) (\frac{1}{0.04} = \frac{1 \times 100}{0.04 \times 100} = \frac{100}{4} = 25,) hence (C). -
(Also I3)
If (p=9) and (q=-3) then (p^2 - q^2) is equal to
(A) 64 (B) 72 (C) 84 (D) 90 (E) 96
(\blacktriangleright) Now (p^2 = 81) and (q^2 = 9,) so (p^2 - q^2 = 81 - 9 = 72,) hence (B). -
A circle has circumference (\pi) units. In square units, its area is
(A) (\frac{\pi}{4}) (B) (\frac{\pi}{2}) (C) (\pi) (D) (2\pi) (E) (4\pi)
(\blacktriangleright) This circumference is (2\pi r = \pi) so that (r = \frac{1}{2}.) Then (A = \pi r^2 = \frac{\pi}{4},) hence (A). -
If (K=L+\frac{6}{R}) and (L=4) and (K=7,) then (R) equals
(A) -18 (B) 1 (C) 12 (D) 8 (E) 2
(\blacktriangleright) We have (7 = 4 + \frac{6}{R}) so that (\frac{6}{R} = 3) and (R = 2,) hence (E). -
If (x, x^2,) and (x^3) lie on a number line in the order shown below, which of the following could be the value of (x?)
(A) -2 (B) (-\frac{1}{2}) (C) (\frac{3}{4}) (D) 1 (E) (\frac{3}{2})
2014 AMC - Senior Division