2019 澳洲 AMC E-Senior 真题 答案 详解
2019-10-03序号 | 文件列表 | 说明 | ||
---|---|---|---|---|
1 | 2019-E-Senior-paper-eng-zh.pdf | 9 页 | 361.15KB | 中英双语真题 |
2 | 2019-E-Senior-paper-eng.pdf | 6 页 | 136.81KB | 英文真题 |
3 | 2019-E-Senior-key.pdf | 1 页 | 64.27KB | 真题答案 |
4 | 2019-E-Senior-solution-eng.pdf | 9 页 | 2.03MB | 真题文字详解(英文) |
中英双语真题
1-10 Questions, 3 marks each
Questions 1 to 10, 3 marks each
- What is the value of (201 \times 9)?
- (A) 189
- (B) 1809
- (C) 1818
- (D) 2001
-
(E) 2019
-
What is the area of the shaded triangle?
- (A) (8 m^2)
- (B) (12 m^2)
- (C) (14 m^2)
- (D) (20 m^2)
-
(E) (24 m^2)
-
What is 19% of $20?
- (A) $20.19
- (B) $1.90
- (C) $0.19
- (D) $3.80
-
(E) $0.38
-
What is the value of (z)?
- (A) 30
- (B) 35
- (C) 45
- (D) 50
-
(E) 55
-
The value of (2^0 + 1^9) is
- (A) 1
- (B) 2
- (C) 3
- (D) 10
-
(E) 11
-
Let (f(x) = 3x^2 - 2x). Then (f(-2)) equals
- (A) -32
- (B) -8
- (C) 16
- (D) 32
- (E) 40
英文真题
Senior Division
Questions 1 to 10, 3 marks each
- What is the value of (201 \times 9)?
- (A) 189
- (B) 1809
- (C) 1818
- (D) 2001
-
(E) 2019
-
What is the area of the shaded triangle?
- (A) (8m^2)
- (B) (12m^2)
- (C) (14m^2)
- (D) (20m^2)
-
(E) (24m^2)
-
What is 19% of $20?
- (A) $20.19
- (B) $1.90
- (C) $0.19
- (D) $3.80
-
(E) $0.38
-
What is the value of (z)?
- (A) 30
- (B) 35
- (C) 45
- (D) 50
-
(E) 55
-
The value of (2^0 + 1^9) is
- (A) 1
- (B) 2
- (C) 3
- (D) 10
-
(E) 11
-
Let (f(x) = 3x^2 - 2x). Then (f(-2)) =
- (A) -32
- (B) -8
- (C) 16
- (D) 32
- (E) 40
真题文字详解(英文)
2019 AMC Senior Solutions 1. $201 \times 9 = 1809$, hence (B). 2. (Also I4) The shaded triangle has base $b=6\mathrm{~m}$ and perpendicular height $h=4\mathrm{~m}$. Its area is $A=\frac{1}{2}bh=\frac{1}{2} \times 6 \times 4=12$ square metres, hence (B). 3. $\frac{19}{100} \times 20=\frac{380}{100}=3.8$, hence (D). 4. (Also J13) In the right-hand triangle, $a=180-45-50=85$. Since $a$ and $b$ are vertically opposite, $b=85$. Finally, $z=180-85-60=35$, hence (B). 5. $2^{0}+1^{9}=1+1=2$, hence (B). 6. $f(-2)=3(-2)^{2}-2(-2)=3 \times 4+4=16$, hence (C). 7. The angle sum of a quadrilateral is $360^{\circ}$. So $\frac{10}{3} \theta=360$, and $\theta=\frac{3}{10} \times 360=108$, hence (E). 8. (Also I9) The pattern repeats 1, 4, 7, 4. Since $1+4+7+4=16$, each full cycle contributes 16, and then there is an additional amount that is 0, 1, 1 + 4 = 5 or 1 + 4 + 7 = 12. That is, the sum is of the form $16n, 16 n+1, 16 n+5$ or $16 n+12$. Of the numbers given, only $65=16 \times 4+1$ can be written this way, hence (E). 9. They meet after $60 \times 20=1200$ seconds. In this time, Mia has walked $1200 \times 1.5=1800$ metres, or $1.8 \mathrm{~km}$, and Crystal has walked $1200 \times 2=2400$ metres, or $2.4 \mathrm{~km}$. So the track is $1.8+2.4=4.2 \mathrm{~km}$ long, hence (B).