2019 澳洲 AMC E-Senior 真题 答案 详解

🗓 2019-10-03 📁 auamc 🏷️ auamc E-Senior


序号 文件列表 说明
1 2019-E-Senior-paper-eng-zh.pdf 9 页 361.15KB 中英双语真题
2 2019-E-Senior-paper-eng.pdf 6 页 136.81KB 英文真题
3 2019-E-Senior-key.pdf 1 页 64.27KB 真题答案
4 2019-E-Senior-solution-eng.pdf 9 页 2.03MB 真题文字详解(英文)

中英双语真题

1-10 Questions, 3 marks each
Questions 1 to 10, 3 marks each

  1. What is the value of (201 \times 9)?
  2. (A) 189
  3. (B) 1809
  4. (C) 1818
  5. (D) 2001
  6. (E) 2019

  7. What is the area of the shaded triangle?

  8. (A) (8 m^2)
  9. (B) (12 m^2)
  10. (C) (14 m^2)
  11. (D) (20 m^2)
  12. (E) (24 m^2)

  13. What is 19% of $20?

  14. (A) $20.19
  15. (B) $1.90
  16. (C) $0.19
  17. (D) $3.80
  18. (E) $0.38

  19. What is the value of (z)?

  20. (A) 30
  21. (B) 35
  22. (C) 45
  23. (D) 50
  24. (E) 55

  25. The value of (2^0 + 1^9) is

  26. (A) 1
  27. (B) 2
  28. (C) 3
  29. (D) 10
  30. (E) 11

  31. Let (f(x) = 3x^2 - 2x). Then (f(-2)) equals

  32. (A) -32
  33. (B) -8
  34. (C) 16
  35. (D) 32
  36. (E) 40

中英双语真题

英文真题

Senior Division
Questions 1 to 10, 3 marks each

  1. What is the value of (201 \times 9)?
  2. (A) 189
  3. (B) 1809
  4. (C) 1818
  5. (D) 2001
  6. (E) 2019

  7. What is the area of the shaded triangle?

  8. (A) (8m^2)
  9. (B) (12m^2)
  10. (C) (14m^2)
  11. (D) (20m^2)
  12. (E) (24m^2)

  13. What is 19% of $20?

  14. (A) $20.19
  15. (B) $1.90
  16. (C) $0.19
  17. (D) $3.80
  18. (E) $0.38

  19. What is the value of (z)?

  20. (A) 30
  21. (B) 35
  22. (C) 45
  23. (D) 50
  24. (E) 55

  25. The value of (2^0 + 1^9) is

  26. (A) 1
  27. (B) 2
  28. (C) 3
  29. (D) 10
  30. (E) 11

  31. Let (f(x) = 3x^2 - 2x). Then (f(-2)) =

  32. (A) -32
  33. (B) -8
  34. (C) 16
  35. (D) 32
  36. (E) 40

英文真题

真题文字详解(英文)

2019 AMC Senior Solutions 1. $201 \times 9 = 1809$, hence (B). 2. (Also I4) The shaded triangle has base $b=6\mathrm{~m}$ and perpendicular height $h=4\mathrm{~m}$. Its area is $A=\frac{1}{2}bh=\frac{1}{2} \times 6 \times 4=12$ square metres, hence (B). 3. $\frac{19}{100} \times 20=\frac{380}{100}=3.8$, hence (D). 4. (Also J13) In the right-hand triangle, $a=180-45-50=85$. Since $a$ and $b$ are vertically opposite, $b=85$. Finally, $z=180-85-60=35$, hence (B). 5. $2^{0}+1^{9}=1+1=2$, hence (B). 6. $f(-2)=3(-2)^{2}-2(-2)=3 \times 4+4=16$, hence (C). 7. The angle sum of a quadrilateral is $360^{\circ}$. So $\frac{10}{3} \theta=360$, and $\theta=\frac{3}{10} \times 360=108$, hence (E). 8. (Also I9) The pattern repeats 1, 4, 7, 4. Since $1+4+7+4=16$, each full cycle contributes 16, and then there is an additional amount that is 0, 1, 1 + 4 = 5 or 1 + 4 + 7 = 12. That is, the sum is of the form $16n, 16 n+1, 16 n+5$ or $16 n+12$. Of the numbers given, only $65=16 \times 4+1$ can be written this way, hence (E). 9. They meet after $60 \times 20=1200$ seconds. In this time, Mia has walked $1200 \times 1.5=1800$ metres, or $1.8 \mathrm{~km}$, and Crystal has walked $1200 \times 2=2400$ metres, or $2.4 \mathrm{~km}$. So the track is $1.8+2.4=4.2 \mathrm{~km}$ long, hence (B).

真题文字详解(英文)

添加小编微信,获取真题。
微信号 ouyu00001 添加好友请备注 auamc