2025 DSE 数学-Mathematics 真题 答案 详解
2025-05-09序号 | 文件列表 | 说明 | ||
---|---|---|---|---|
1 | 2025-数学-Mathematics-answer-eng.pdf | 42 页 | 3.07MB | 答案(英文) |
答案(英文)
2025 HKDSE Mathematics Compulsory Part Examination Paper I Suggested Solutions by Jacky Chan
1
[
\frac{\left(x^4 y^{-5}\right)^3}{xy^2} = x^{4 \times 3 - 1} y^{-5 \times 3 - 2} = x^{11} y^{-17} = \frac{x^{11}}{y^{17}}
]
2
[
\frac{1}{3d-4} - \frac{2}{6d+5} = \frac{(6d + 5) - 2(3d - 4)}{(3d - 4)(6d + 5)} = \frac{13}{(3d - 4)(6d + 5)}
]
3
Since (m:n=8:7), let (\begin{cases} m = 8k \ n = 7k \end{cases}), where (k) is a non-zero constant.
[
2m + 3n = 999 \
2(8k) + 3(7k) = 999 \
k = 27 \
n = 7(27) = 189
]
4a
((-2,-4))
b
(C=(-2,-4+t))
Since A, O and C are collinear,
The slope of OC = The slope of OA
[
\frac{(-4+t)-0}{-2-0}=\frac{-2-0}{4-0}
]
(t = 5)
P.1 (17) © Jacky Chan Yui Him (2025) All rights reserved.