2025 DSE 数学延伸部分-M1 真题 答案 详解
2025-05-09序号 | 文件列表 | 说明 | ||
---|---|---|---|---|
1 | 2025-数学延伸部分-M1-answer-eng.pdf | 17 页 | 352.94KB | 答案(英文) |
答案(英文)
2025 HKDSE Mathematics Extended Part (Module 1) Examination Suggested Solutions by Jacky Chan
2026 DSE Maths/M1/M2 Courses: https://bit.ly/489KKah
2027 DSE Maths/M1/M2 Courses: https://bit.ly/45NItGH
Details of All Courses: https://campsite.bio/jackymaths
Mathematics Information Instagram: jackymaths
[ \begin{array}{|c|} \hline a & \frac{k(1)^3}{3^1} + \frac{k(3)^3}{3^3} + \frac{k(9)^3}{3^9} = 1 \ & k = \frac{27}{37} \ \hline b & E(X) = 1 \times \frac{27(1)^3}{3^1} + 3 \times \frac{27(3)^3}{3^3} + 9 \times \frac{27(9)^3}{3^9} \ & = \frac{99}{37} \ E(X^2) = 1^2 \times \frac{27(1)^3}{3^1} + 3^2 \times \frac{27(3)^3}{3^3} + 9^2 \times \frac{27(9)^3}{3^9} \ = 9 \ Var(X) = E(X^2) - [E(X)]^2 \ = 9 - \left(\frac{99}{37}\right)^2 \ = \frac{2520}{1369} \ E(\overline{X}) = E(X) \ = \frac{99}{37} \hline \end{array} ]
P.1 (17)
© Jacky Chan Yui Him (2025)
All rights reserved.