2025 DSE 数学延伸部分-M2 真题 答案 详解
2025-05-10序号 | 文件列表 | 说明 | ||
---|---|---|---|---|
1 | 2025-数学延伸部分-M2-answer-eng.pdf | 20 页 | 447.78KB | 答案(英文) |
答案(英文)
2025 HKDSE Mathematics Extended Part (Module 2) Examination Suggested Solutions by Jacky Chan
2026 DSE Maths/M1/M2 Courses: https://bit.ly/489KKah
2027 DSE Maths/M1/M2 Courses: https://bit.ly/45NItGH
Details of All Courses: https://campsite.bio/jackymaths
Mathematics Information Instagram: jackymaths
The general term of $(1+5x)^n = C_r^n(5x)^r = C_r^n5^rx^r$
$a_1=27$
$1\times C_1^15^1+m\times1=27$
$m=27-5n$
$a_2=285$
$1\times C_2^15^2+m\times C_1^15^1=285$
$25\left[\frac{n(n-1)}{2}\right]+5(27-5n)n=285$
$5n^2-49n+114=0$
$(5n-19)(n-6)=0$
$n=\frac{19}{5}$ (rej.) or $6$
$m=27-5(6)$
$=-3$
Therefore,
$\begin{cases}m=-3\n=6\end{cases}$
P.1 (20)
© Jacky Chan Yui Him (2025)
All rights reserved.